Efficient Monte Carlo algorithm in quasi-one-dimensional Ising spin systems.
نویسنده
چکیده
We develop an efficient Monte Carlo algorithm, which accelerates slow Monte Carlo dynamics in quasi-one-dimensional Ising spin systems. The loop algorithm of the quantum Monte Carlo method is applied to the classical spin models with highly anisotropic exchange interactions. Both correlation time and real CPU time are reduced drastically. The algorithm is demonstrated in the layered triangular-lattice antiferromagnetic Ising model. We have obtained the relation between the transition temperature and the exchange interaction parameters, which modifies the result of the chain-mean-field theory.
منابع مشابه
Monte Carlo Simulation of Spin Models with Long-Range Interactions
An efficient Monte Carlo algorithm for the simulation of spin models with long-range interactions is discussed. Its central feature is that the number of operations required to flip a spin is independent of the number of interactions between this spin and the other spins in the system. In addition, critical slowing down is strongly suppressed. In order to illustrate the range of applicability o...
متن کاملAuxiliary-field Monte Carlo for quantum spin and boson systems
We describe an algorithm for the numerical simulation of quantum spin and boson systems. The method is based on the Trotter decomposition in imaginary time and a decoupling by auxiliary Ising spins. It can be applied, in principle, to arbitrary ~random! spin systems, however, in general it suffers from the ‘‘minus-sign problem.’’ This problem is absent in the case of the Ising model in a transv...
متن کاملFast vectorized algorithm for the Monte Carlo Simulation of the Random Field Ising Model
An algoritm for the simulation of the 3–dimensional random field Ising model with a binary distribution of the random fields is presented. It uses multi-spin coding and simulates 64 physically different systems simultaneously. On one processor of a Cray YMP it reaches a speed of 184 Million spin updates per second. For smaller field strength we present a version of the algorithm that can perfor...
متن کاملNew quantum Monte Carlo study of quantum critical phenomena with Trotter-number-dependent finite-size scaling and non-equilibrium relaxation
We propose a new efficient scheme for the quantum Monte Carlo study of quantum critical phenomena in quantum spin systems. Rieger and Young’s Trotter-number-dependent finite-size scaling in quantum spin systems and Ito et al.’s evaluation of the transition point with the non-equilibrium relaxation in classical spin systems are combined and generalized. That is, only one Trotter number and one i...
متن کاملMonte Carlo Simulations of Spin Systems
This lecture gives a brief introduction to Monte Carlo simulations of classical O(n) spin systems such as the Ising (n = 1), XY (n = 2), and Heisenberg (n = 3) model. In the first part I discuss some aspects of Monte Carlo algorithms to generate the raw data. Here special emphasis is placed on non-local cluster update algorithms which proved to be most efficient for this class of models. The se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 101 21 شماره
صفحات -
تاریخ انتشار 2008